
Welcome

Aura Systems, Inc Shareholder Meeting 2011

Induction Machines

Tesla's machine

Modern machine

Induction Machine

Induction machines are the workhorse of industry. 90% of all electrical rotating machinery in industry are induction type.

All induction machines have a rotor and a stator. Two basic forms of induction machines:

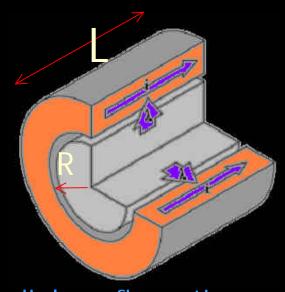
Electric Motors

Output Mechanical Work
A rotating magnetic field in the stators
generates a torque on the rotor due to an
induced magnetic field in the rotor. This
causes the shaft to rotate at a speed
slightly slower than the rotating magnetic
field in the stator.

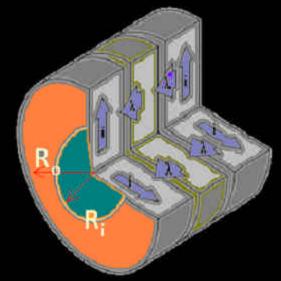
Positive Slip

Input Mechanical Work
Output Electric Energy
A rotating rotor with a magnetic field in
it typically induced by a current in the
stator induces a large current in the
stator. The frequency of the field
induced in the stator is slightly slower
than the rotating shaft.

Negative Slip


AuraGen/VIPER vs. Traditional Induction Motor/Generator

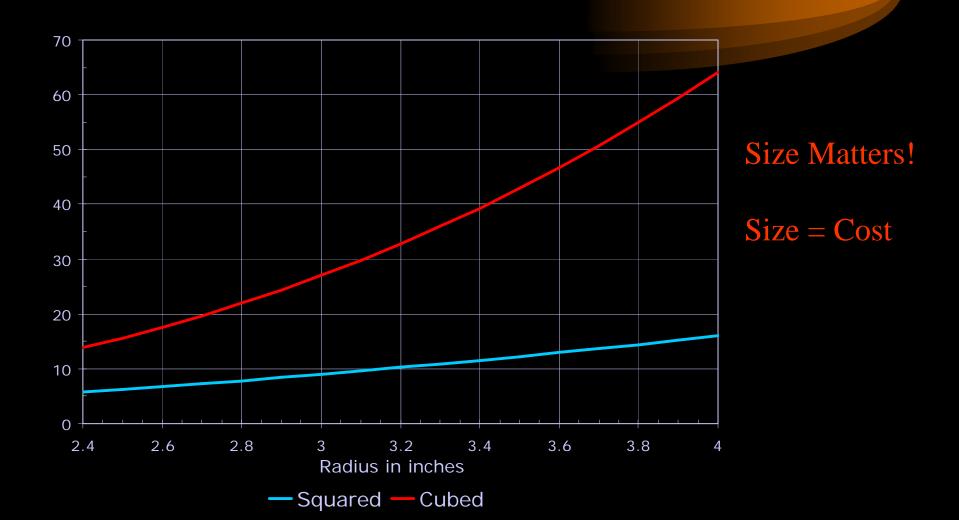
Standard Induction AuraGen Standard Induction AuraGen Motor Rotor Rotor Motor Stator


Stator (2)

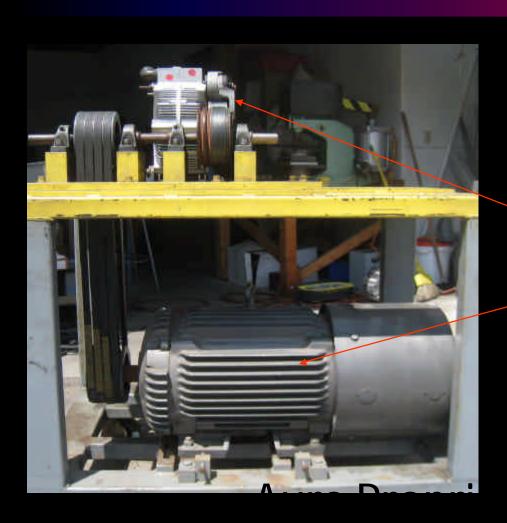
Radial vs. Axial Configuration

Radial configuration

$$P = T\mathbf{w} = 2\mathbf{p}\mathbf{w}R^2L\mathbf{t}$$



Axial configuration


$$P = T\mathbf{w} = 2\mathbf{p}\mathbf{w}R_0^3(k_d - k_d^3)\mathbf{t}, k_d = \frac{R_i}{R_o}$$

Axial machine are acknowledged to achieve higher torque (energy) density

Cubed vs. Squared

The Power of AuraGen

The AuraGen provides output equal to this large machine

Why Mobile Power

- Mobile power is a large and growing market as societies around the world increase their dependence on electric tools, digital sensors, electronic instruments, computers, communication equipment, modern military hardware and hybrid /electric vehicles.
- ➤ Unlike some technologies that are looking for applications, mobile power users are looking for needed solutions. This results in a well-defined market place.
- ➤ Our technology can clearly and unambiguously provide a value proposition to mobile power users at existing market pricing. The proposition is (i) operational cost savings, (ii) meets performance requirements particularly at low rpm, (iii) readily integrated into numerous platforms and (iv) is an environmentally friendly solution.

Core Product Line

Power (kW)	2.5	5	10/20	15/30	60/120
Diameter	7.5"	9"	12"	12"	14"
110 VAC/ 60 Hz. Single-φ					
220 VAC/60 Hz. Split-φ					
230 VAC/50 Hz. Split-φ					
220 VAC/60 Hz. 3-φ					
240 VAC/50 Hz. Split φ					
480 VAC/60 Hz. 3-φ					
480 VAC/50 Hz. 3-φ					
12 VDC					
24 VDC					
300-400 VDC					
800-1200 VDC					

Product Line Schedule

			2011			2012								
			0	N	D	J	F	M	Α	M	J	J	A	S
1.0		8-Inch Diameter System												
	1.1	Mechanical Design and Drawings												
	1.2	Prototype												
	1.3	Testing												
	1.4	Production Tooling												
	1.5	Assembly Line for Production												
2.0		9-Inch Diameter System												
	2.1	Mechanical Design and Drawings												
	2.2	Prototype												
	2.3	Testing												
	2.4	Production Tooling												
	2.5	Assembly Line for Production												
3.0		12 inch 10/20 kW				<u>In</u>	P	roc	duc	cti	<u>on</u>			
4.0		12 inch enhanced 15/30 kW	Develop.											
5.0		14-Inch Diameter System												
	5.1	Mechanical Design and Drawings												
	5.2	Prototype												
	5.3	Testing												
	5.4	Production Tooling												

Energy Conversion Using AuraGen

Sample of Mobile Power Users

Buses
Military
Oil and Gas Services
Food Transport Trucks
Telecommunication vehicles
Utility service and repair vehicles
Ambulances, Police and fire trucks
Municipalities and local government agencies

Market Segments

- Military
 - Driven by demand for exportable power for sensors, computers, communication, fire control etc.
- Transport Refrigeration
 Driven by high cost of diesel fuel and environmental concerns.
- ► APUs (Stand Alone Generators)
 - Driven by high cost of fuel environmental concerns and higher power demands found in such areas as cell towers, oil and gas fields, emergency rescue vehicles etc.
- Vehicle Electrification
 - Hybrid and electric vehicles as well as electrification of components such as A/C systems for buses and trucks

Government Customers Using Aura's VIPER

Transport Refrigeration

The Old Diesel Way

Aura's All Electric Way

All-Electric Transport Refrigeration

Zanotti Power by AURA EFZ Refrigeration Unit

Electronic Control Unit

AuraGen Generator

Aura Proprietary

Value Analysis

1 Cooling system in BTU/hr.	2	0000	3	0000	50000		
2 Fuel utilization per hour for Diesel based solution	0.6			0.9	1.5		
3 Fuel utilization per hour for all electric solution	(0.08	(0.12	0.2		
4 Annual working hours	2080		2	2080	3120		
5 Hourly scheduled maintenance cost for Diesel	\$	0.75	\$	1.13	\$	1.88	
6 Hourly maintenance cost for Electric System	\$	0.15	\$	0.23	\$	0.38	
7 Diesel Fuel Cost per gallon	\$	3.90	\$	3.90	\$	3.90	
8 Depreciation over life time in years		7		7		7	

	Diesel	Electric	Diesel	Electric	Diesel	Electric
System Cost Including Installation	\$ 16,000.00	\$ 22,900.00	\$ 20,000.00	\$ 27,000.00	\$ 28,000.00	\$ 36,000.00
Operational Costs						
Fuel	\$ 4,867.20	\$ 648.96	\$ 7,300.80	\$ 973.44	\$ 18,252.00	\$ 2,433.60
Scheduled maintenance	\$ 1,560.00	\$ 312.00	\$ 2,350.40	\$ 478.40	\$ 5,865.60	\$ 1,185.60
Annual Depreciation (straight line 7 year on cost)	\$ 2,285.71	\$ 3,271.43	\$ 2,857.14	\$ 3,857.14	\$ 4,000.00	\$ 5,142.86
Total Annual Cost	\$ 8,712.91	\$ 4,232.39	\$ 12,508.34	\$ 5,308.98	\$ 28,117.60	\$ 8,762.06
Increased Annual Income		\$ 4,480.53		\$ 7,199.36		\$ 19,355.54

Social Benefits

Emissions Reduction and Compliance

	Di	esel TRU S	System	Electric System					
	NOx	СО	PM	NOx	СО	PM			
Truck	936	819	46.8	936	819	46.8			
Reefer	255	224	13.6	0	0	0			
Total	1,191	1,043	60.4	936	819	46.8			

AURA ELECTRIFICATION SYSTEM FOR All Electric Reefer Solution is EXEMPT from Transport Refrigeration Unit (TRU) CARB regulation and would NOT NEED TO REGISTER with CARB in 2010

Rod Hill, CARB

*TRU is a refrigeration system that is powered by a diesel engine that is used in the transport of perishable goods

APUs

Vehicle Electrification

Mechanical compressor

Electrical compressor

The AuraGen vs. Traditional Solutions

	AuraGen	Gensets	High Output Alternators	PM Alternators	Dynamic Inverters	Fuel Cells	
Compact size	•	•		•	•	•	
Fuel efficiency	•	•	•	•	•	•	
Need for an additional fuel source	•	•	•	•	•	•	Legend
Heat generation	•	•	•	•	•	•	Excellent
Service and maintenance costs	•	•	•	•	•	•	— High
Breadth of industries serviced	•	•	•	•	•	•	Medium
Ease to obtain peak power ⁽³⁾	•	•	•	•	•	•	Low
Flexibility and efficiency of energy delivery	•	•	•	•	•	•	Poor
Clean / Green rating	•	•			•	•	
Noise level	•	•	•	•	•	•	